Od 2019 roku wiele lekcji w 4 klasie zaczynam (ok. 5 min) od
- zobaczyć, że dzielenie jest odwrotnością mnożenia,
- wykorzystywać dzielenie z mieszczeniem np. ile 3 mieści się w 33, czyli 33 : 3 =? ,
- poznać różne sposoby mnożenia/dzielenia liczb w pamięci.
1. http://mathforlove.com/lesson/unit-chats/?fbclid=IwAR2d8Y59R4xegeoJz5jYAodYxsTEfqzN29p85sfw9cp7Mv-HYlh5Z_RMvyM
2. https://www.stevewyborney.com/?p=893
3. http://fractiontalks.com/
A tak u nas wyglądały lekcje z "number talks":
Lekcja pierwsza:
- rysunek planszy do gry Mankala i dwa pytania:
Pytanie 1. Ile jest kamieni/czarnych kropek? Jak to obliczyłaś/eś?
Czekając, aż wszyscy będą gotowi, spróbuj wymyśleć inne sposoby liczenia.
![]() |
http://www.mankala.pl/?pl_reguly-gry-mankala-(mancala-kalaha),9 |
a) 4 + 4 + 4 +... - i tu moja sugestia, jak uniknąć pisania tylu czwórek? Usłyszałam: 12 x 4 =
b) Na górze 6 x 4 to 24 i na dole też, czyli 48
c) 8 + 8 + 8 + 8 + 8 + 8 = 16 + 16 + 16 = 32 + 16 = 48
d) 16 + 16 + 16 = 30 + 18
e) Wiem, że 6 x 8 = 48
Pytanie 2. Ile czwórek mieści się w 48? I działanie 48 : 4 =
- zadanie z treścią: reguły gry http://www.mankala.pl/files/zasady_gry_mankala.pdf
- dwuosobowe grupy (losowanie kart) i pierwsza rozgrywka.
![]() | |||
Plansze i fasolki - znalazłam w domu. |
- rysunek na tablicy 48 kropek w szyku prostokątnym i pytanie: Ile czwórek mieści się w 48? Jak to obliczyłaś/eś?
Spróbujcie!
- zadanie: wspólne zapisanie zasad gry Mankala z pamięci w zeszycie.
- gra w losowo wybranych parach. Każda kolejna rozgrywka to odkrywanie strategii i większa frajda.
- rysunek czwórek (wsparcie dla potrzebujących w dalszej części lekcji) i pytania:
Pomysły dzieci, które pamiętam:
5 x 4 = 20 i 5 x 20 = 100 - jak to zapisać w jednym działaniu? (5x4) x 5 = 100.
10 x 2 = 20 - kropki w jednym rzędzie 5 x 20 = 100 w pięciu rzędach.
policzyłem najpierw kółka/talerzyki 5 x 5 = 25. Na każdym są 4 kropki, czyli 25 x 4 = 20 x 4 i 5 x 4
2. Ile czwórek mieści się w 100? 100: 4 = ?
Odpowiedź na którą czekałam: Przecież to widać, że jest odwrotnie!
25 x 4 = 100, czyli 100: 4 = 25
- gra dwuosobowa Multi Grid: Times Tables ( plansza z mnożeniem przez 4 - MultiGrid4) ze strony MATHSTICKS.
Gracze na zmianę wybierają dowolne pole z liczbą, obliczają w pamięci (bez kalkulatora!) ile czwórek mieści się w tej liczbie, a działanie zapisują w zeszycie. Jeśli wynik jest poprawny - gracz stawia pionek w swoim kolorze na tym polu. Jeśli wynik jest błędny (drugi gracz sprawdza) - nie można postawić klocka na wybranym polu - strata ruchu.
Wygrywa osoba, która jako pierwsza ułoży wzór (przykłady podane na dole planszy) ze swoich 5 klocków. Wzory mogą być obrócone.
Emocje były i odkrywanie strategii ustawiania klocków też.
![]() |
Jeśli w 100 mieści się 25 czwórek, to w 200 mieści się... |
![]() |
Dla wytrwałych zamieszczam post z poprzedniej wersji bloga - dla młodszych dzieci:)
Czym jest "zmysł liczby"? - tłumaczenie Julii.
Pojęcie "zmysłu liczby" jest względnie
nowym w słowniku edukacji matematycznej. Zdefiniować je jest trudno, ale,
mówiąc ogólnie, odnosi się do "solidnej bazy wiedzy o liczbach, która
pozwala na zrozumienie liczb oraz relacji między nimi, jak również na
rozwiązywanie problemów matematycznych nieopisanych tradycyjnymi
algorytmami" (Bobis, 1996).
Od kiedy możemy mówić o zmyśle liczby?
Intuicyjne wyczucie liczby pojawia się już w bardzo wczesnym wieku. Nawet
dwuletnie dzieci są w stanie zidentyfikować jeden, dwa lub trzy przedmioty
zanim jeszcze nauczą się liczyć ze zrozumieniem (Gelman & Gellistel, 1978).
Piaget nazwał tę zdolność do natychmiastowego rozpoznawania liczby obiektów w
małym zbiorze "subitising". Gdy rozwija się umysł dziecka, zazwyczaj
w wieku około czterech lat, bez liczenia rozpoznawać potrafi już zbiory
czteroelementowe. Uważa się, iż maksymalna liczba elementów, którą rozróżnić
możemy natychmiastowo, to, nawet dla ludzi dorosłych, pięć. Umiejętność ta
zdaje się rodzić ze zdolności mózgu do tworzenia obrazów myślowych układów i
łączenia ich z liczbą. Dlatego też możliwe jest rozpoznanie liczniejszego zbioru,
jeśli jego elementy zorganizowane są w odpowiedni sposób, który to układ
zapamiętujemy. Prostym przykładem jest sześć kropek ułożonych w dwa rzędy po
trzy, podobnie jak na kostce do gry bądź kartach. Ponieważ taki układ jest nam
dobrze znany, szóstka jest natychmiast rozpoznawana, gdy przedstawi się ją w
ten sposób.
Gdy skonfrontowani zostajemy z więcej niż pięcioma przedmiotami, musimy zazwyczaj
zastosować inne strategie myślowe. Dla przykładu, możemy wyobrazić sobie zbiór
sześciu elementów jako dwa zbiory trzyelementowe. Każdy z tych zbiorów trzech
elementów jest natychmiast rozpoznawany, po czym bardzo szybko (w zasadzie
podświadomie) łączymy je, by utworzyć zbiór sześcioelementowy. Korzystając z
tej strategii, wykluczamy realne liczenie kolejnych elementów, ale używamy
związku między częścią a całością oraz szybkiego dodawania w pamięci. Oznacza
to, iż istnieje zrozumienie, że liczba (w tym wypadku sześć) może być złożona z
mniejszych części, w parze z wiedzą, że "trzy plus trzy daje sześć".
Ten rodzaj myślenia matematycznego pojawia się u dzieci już zanim zaczną naukę
szkolną i powinien być wspierany, ponieważ leży u podstawy zrozumienia działań
oraz rozwoju strategii liczenia w pamięci.
Jakie sposoby
nauczania wspomagają wczesny rozwój zmysłu liczby?
Nauka liczenia ze zrozumieniem
jest kluczową umiejętnością, ale inne, takie jak zauważanie
podgrup, muszą
być rozwijane równocześnie z liczeniem, aby zapewnić solidne podstawy
dla zmysłu liczby. Nawet oglądanie tych samych obiektów (choćby
stempelków na
karcie) w różnych ułożeniach może sprowokować różne strategie myślowe.
Dla
przykładu, ukazanie sześciu stempelków podzielonych na grupę czterech i
dwóch
stwarza układ "cztery i dwa daje sześć". Jeśli cztery nie zostaje
natychmiast rozpoznane, można postrzegać ten układ jako "dwa i dwa i dwa
daje sześć". Jasne jest, iż taki układ jest nieco bardziej złożony niż
dwie grupy po trzy. Tak więc różne ułożenia uruchamiać będą różne
strategie, a
te strategie zmieniać się w zależności od osoby.
Skoro podobne
strategie myślowe powinny być wspierane (a samo liczenie tępione), niezbędne są
ograniczenia czasowe. Gdy pozwalamy mózgowi patrzeć na grupę przedmiotów tylko
przez kilka sekund, rzucamy mu wyzwanie, by znalazł i wykorzystał inną
strategię niż zwykłe liczenie. Ważne jest także, by dzieci zastanawiały się i
dzieliły swoimi strategiami (Presmeg, 1986; Mason, 1992). Jest to pomocne na
trzy sposoby:
- ujęcie strategii w słowa przenosi ją na poziom świadomy i pozwala lepiej poznać własny sposób myślenia;
- dostarcza innym dzieciom możliwości podchwycenia nowych strategii;
- nauczyciel może ocenić używany sposób rozumowania i odpowiednio dostosować rodzaj układu, poziom trudności czy tempo.
Wczesne ćwiczenia liczbowe najlepiej udają się, gdy używamy ruchomych
przedmiotów takich jak pionki, klocki czy małe zabawki. Początkowo większość
dzieci potrzebować będzie konkretnego doświadczenia, jakim jest fizyczne
dzielenie grup obiektów w podgrupy i łączenie mniejszych grup w celu uzyskania
większej grupy. Dopiero po takich niezbędnych ćwiczeniach bardziej statyczne
pomoce, takie jak karty w kropki, stają się użyteczne.
Karty w kropki
są zwykłymi kartami z naklejonymi kropkami wybranego koloru po jednej stronie
(w rzeczywistości użyć można dowolnych oznaczeń; pieczątki są wygodne, gdy
robimy dużo kart). Ważne w projekcie karty są liczba kropek i sposób ich
ułożenia. Różne kombinacje tych dwóch decydują o matematycznej strukturze każdej
karty i dalej rodzajach relacji między liczbami oraz strategii myślowych przez
nią wywoływanych.
Zanim
przeczytasz dalej, rozważ każdy z poniższych układów kropek. Jakie strategie
myślowe najprawdopodobniej zostaną wywołane przez każdą z kart? W jakim porządku
ułożyłbyś je ze względu na poziom trudności?
Karta A to klasyczny, symetryczny układ pięciu znany z kości do gry czy kart, tak więc często jest natychmiast rozpoznawany bez angażowania innych strategii myślowych. Jest to być może układ piątki, z którym najłatwiej jest sobie poradzić.
Karta A to klasyczny, symetryczny układ pięciu znany z kości do gry czy kart, tak więc często jest natychmiast rozpoznawany bez angażowania innych strategii myślowych. Jest to być może układ piątki, z którym najłatwiej jest sobie poradzić.
Karta B przedstawia jasno oddzielone podgrupy dwóch i trzech elementów, z których
każda może być natychmiast rozpoznana. Z czasem informacja, iż "dwa i trzy
daje pięć", może być przywoływana niemal natychmiastowo.
Karta C: Liniowy układ jest tym, który najczęściej przywołuje liczenie. Jednakże
wielu ludzi podzieli kropki na grupy dwóch i trzech, podobnie jak na
poprzedniej karcie. Inne strategie, takie jak dostrzeżenie dwójki, a następnie
liczenie "3,4,5", również mogą zostać użyte.
Karta D: tu rozmieszczenie mogłoby zostać określone mianem przypadkowego, lecz w
rzeczywistości zostało celowo skonstruowane tak, by sprowokować do podziału na
podgrupy. Jest wiele sposobów tworzenia podgrup, a układ nie daje żadnej
wskazówki, w którą stronę zmierzać, dlatego tę kartę można uznać za
najtrudniejszą w zestawie.
Karta E pokazuje jeszcze jeden układ podgrup, który zachęca do skorzystania z (lub
odkrycia) reguły "cztery i jeden daje pięć".
Rzecz
jasna
użycie mniej niż pięciu kropek rozwijałoby bardziej podstawowe
umiejętności zmysłu liczby, a użycie więcej niż pięciu dostarczyło
okazji do ćwiczenia
bardziej zaawansowanych strategii. Jednakże prawdopodobnie bezużyteczne
jest
korzystanie z więcej niż dziesięciu kropek. Podobne karty należy na
krótko
pokazać dzieciom, a te następnie zapytać o liczbę kropek, które
widziały.
Zapytać należy także o wyjaśnienie, jak dzieci spostrzegły układ, i
dalej
jakich strategii użyły.
Jakie gry mogą wspomóc rozwój wczesnego zmysłu
liczby?
Gry mogą być
bardzo użyteczne, jeśli chodzi o wspieranie i rozwijanie pomysłów oraz procedur
poprzednio przedstawionym dzieciom. Mimo że dla każdej z poniższych gier podany
jest sugerowany przedział wiekowy, to przede wszystkim poziom doświadczenia
dziecka powinien decydować o doborze gier. Należy rozegrać kilka przykładowych
rozgrywek, aby dzieci oswoiły się z zasadami każdej gry.
- Rozdaj i Powtórz (4-5 lat) 3-4 graczy
Potrzebne: 15
kart z kropkami o różnych układach kropek reprezentujących liczby od jednego do
pięciu oraz zapas pionków lub guzików.
Przebieg gry:
Jedno z dzieci rozdaje po jednej karcie twarzą do dołu wszystkim graczom.
Następnie każde dziecko używa pionków, by skopiować układ kropek na jego/jej karcie
i mówi ich liczbę na głos. Rozdający sprawdza wyniki, po czym rozdaje po nowej
karcie każdemu z graczy, układając ją na poprzedniej. Dzieci przestawiają
pionki, by zgadzały się z nową kartą. Gra toczy się do momentu, gdy wszystkie
karty zostaną zużyte.
Wariacje/rozszerzenia:
1. Każde
dziecko może spróbować przewidzieć głośno, czy nowa karta ma więcej, mniej czy
tyle samo kropek co poprzednia. Przypuszczenia sprawdzone zostają przez
rozdającego, który obserwuje, czy gracz musi dodać czy usunąć pionki.
2. Zwiększ
liczbę kropek na kartach.
- Memory (5-7 lat) 2 graczy
Potrzebne: 12
kart z kropkami, składających się z sześciu par kart pokazujących dwa różne
układy danej liczby kropek, od jednej do sześciu (na przykład, parą dla 5 mogą
być karta A i karta B z powyższego zestawu).
Przebieg gry:
Rozłóż wszystkie karty twarzą w dół. Pierwszy gracz przewraca dowolne dwie
karty. Jeśli są parą (tzn. mają taką samą liczbę kropek), gracz odkłada karty
na bok i otrzymuje punkt. Jeśli nie są parą, obie karty zostają z powrotem
obrócone i odłożone na swoje miejsca. Teraz drugi gracz odwraca wybrane dwie
karty i tak dalej. Grę wygrywa gracz, który ma więcej par po zdjęciu wszystkich
kart ze stołu.
Wariacje/rozszerzenia:
1. Zwiększ
liczbę używanych kart.
2. Użyj
większej liczby kropek na kartach.
3. Utwórz pary
złożone z karty z kropkami oraz karty numerycznej.
- Wskaż różnicę (7-8 lat) 2-4 graczy
Potrzebne:
talia 20 do 30 kart z kropkami (kropki od jednej do dziesięciu w regularnych i
znanych z kości układach), pionki.
Przebieg gry:
Rozłóż na stole dziesięć kart twarzą w dół, a pozostałe karty, również twarzą w
dół, ułóż w stosik. Pierwszy gracz odwraca kartę z góry stosiku i umieszcza
obok. Następnie odwraca jedną z kart rozłożonych na stole. Gracz wskazuje
różnicę między liczbą kropek na każdej karcie, dobierając taką liczbę pionków
(na przykład jeśli na jednej karcie znajdują się 3 kropki, a na drugiej 8,
gracz weźmie 5 pionków). Kartę ze stołu odkładamy na jej miejsce twarzą w dół,
kolejny gracz bierze następną kartę z góry stosiku i tak dalej. Gra kończy się,
gdy wszystkie karty ze stosiku zostaną zużyte. Zwycięzcą jest gracz z
największą liczbą pionków; dlatego dobrze jest zapamiętać wartości kart rozłożonych
na stole, by wybrać tę, która da największą różnicę.
Wariacje/rozszerzenia:
1. Spróbuj
wybierać te karty ze stołu, które dadzą najmniejszą różnicę, tak by gracz z
najmniejszą liczbą pionków wygrywał.
2. Zastąp
stosik kart rzutem kością. Zacznij z daną liczbą pionków (powiedzmy z 20), aby
zakończyć grę, gdy wszystkie znajdą się w posiadaniu któregoś z graczy.
3. Użyj kart z
przypadkowym rozmieszczeniem kropek.
Brak komentarzy:
Prześlij komentarz